
This article was downloaded by:

On: 26 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Nucleosides, Nucleotides and Nucleic Acids

Publication details, including instructions for authors and subscription information: http://www.informaworld.com/smpp/title~content=t713597286

NUCLEIC ACID COMPONENTS AND THEIR ANALOGUES: A NOVEL AND EFFICIENT METHOD FOR THE SYNTHESIS OF A NEW CLASS OF BIPYRIDYL AND BIHETEROCYCLIC-NITRO GEN THIOGLYCOSIDES FROM PYRIDINE-2(1*H*)-THIONES

Galal H. Elgemeie^a; Mervat M. El-Enany^b; Mohamed M. Ismail^b; Eman K. Ahmed^b
^a Chemistry Department, Helwan University, Helwan, Cairo, Egypt ^b Department of Organic Chemistry, Cairo University, Cairo, Egypt

Online publication date: 10 July 2002

To cite this Article Elgemeie, Galal H. , El-Enany, Mervat M. , Ismail, Mohamed M. and Ahmed, Eman K.(2002) 'NUCLEIC ACID COMPONENTS AND THEIR ANALOGUES: A NOVEL AND EFFICIENT METHOD FOR THE SYNTHESIS OF A NEW CLASS OF BIPYRIDYL AND BIHETEROCYCLIC-NITRO GEN THIOGLYCOSIDES FROM PYRIDINE-2(1H)-THIONES', Nucleosides, Nucleotides and Nucleic Acids, 21: 6, 477 — 493

To link to this Article: DOI: 10.1081/NCN-120014820 URL: http://dx.doi.org/10.1081/NCN-120014820

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS Vol. 21, Nos. 6 & 7, pp. 477–493, 2002

NUCLEIC ACID COMPONENTS AND THEIR ANALOGUES: A NOVEL AND EFFICIENT METHOD FOR THE SYNTHESIS OF A NEW CLASS OF BIPYRIDYL AND BIHETEROCYCLICNITROGEN THIOGLYCOSIDES FROM PYRIDINE-2(1H)-THIONES

Galal H. Elgemeie, 1,* Mervat M. El-Enany, 2 Mohamed M. Ismail, 2 and Eman K. Ahmed 2

¹Chemistry Department, Faculty of Science, Helwan University,
Ain-Helwan, Helwan, Cairo, Egypt

²Department of Organic Chemistry, Faculty of Pharmacy,
Cairo University, Cairo, Egypt

ABSTRACT

A novel synthesis of a new class of bipyridyl and biheterocyclic-nitrogen thioglycosides utilizing the reactions of heterocyclic substituted pyridine-2(1H)-thiones and α -bromoglucose or α -bromoglactose tetraacetate as starting components is described.

Key Words: Pyridine thioglycosides; Pyridine-2(1*H*)-thiones; Coupling reactions; Biheterocyclic thioglycosides

477

DOI: 10.1081/NCN-120014820 Copyright © 2002 by Marcel Dekker, Inc. 1525-7770 (Print); 1532-2335 (Online) www.dekker.com

^{*}Corresponding author. Fax: 002 02 5870668; E-mail: rughe@rusys.eg.net or elgemei@hotmail.com

Pyridinethione nucleosides were recently reported by us to exert inhibitory effects on both DNA and RNA containing viruses. [1-5] On the basis of these findings, it was of interest to prepare modified analogues to search for more effective agents. This paper describes the synthesis of nonclassical bipyridyl and biheterocyclic-nitrogen thioglycosides. As far as we know, these are the first reported examples of biheterocyclic thioglycosides. The sequence of reactions followed in the preparation of the designed compounds, is summarized in the following schemes (Charts 1-4). Thus, it was found that heating of cyclopentanone, cyclohexanone, cycloheptanone or cyclooctanone with cyanothioacetamide and a catalytic amount of ammonium acetate/ acetic acid in benzene for 3h with azeotropic removal of water gave the corresponding cycloalkylidenecyanothioacetamides 1 in good yields. Compounds 1 reacted with pyridylmethylenemalononitriles 2 in refluxing ethanol containing catalytic amounts of piperidine for 2h to give the bipyridyl derivatives 5a-h. The structures of compounds 5 are established on the basis of their elemental analyses and spectral data. Thus, 5c revealed a molecular formula $C_{15}H_{13}N_3S$ (m/z=267). The ¹H NMR spectrum of **5c** showed a broad scale at δ 14.12 ppm assigned to the NH proton. The formation of 5 from 1 and 2 is assumed to proceed via addition of the active methylene group of 1 to the olefenic bond of 2 to give the intermediate 3. This Michael adduct 3 then cyclizes via malononitrile elimination to give the intermediate dihydropyridine derivative 4, which is oxidized under the reaction conditions to yield the fused pyridinethiones 5. The interesting course of the reaction between the cycloalkylidene-cyanothioacetamides 1 and the pyridylmethylenemalononitriles 2 prompted us to investigate the reaction between the pyridylmethylene(cyano)thioacetamides **6a,b** and the cycloalkylidenemalononitriles 7a-d under the same conditions. The obtained products were shown to be the same as those resulting from the reaction of 1 with 2 by their m.p.s and spectral data. The mechanism of the reaction of 6 with 7 is assumed to proceed through the formation of the initial adduct 8, which lead to intermediates 9 and subsequently to the products 5, as the same produced by the reaction of 1 with 2. Compounds 5 could be coupled with different classes of sugar halides to give a novel ring system of glycosides. Thus, it was found that compounds 5a-h reacted with 2,3,4,6-tetra-O-acetyl-α-D-glucoand -galacto-pyranosyl bromides 13a,b in the presence of aqueous potassium hydroxide to give the corresponding S-glucosides 15a-h and S-galactosides 15i-p, respectively. The structures of the reaction products 15 were established on the basis of their elemental analyses and spectral data (MS, IR, UV, ¹H NMR, ¹³C NMR). Thus, the analytical data for **15c** revealed a molecular formula $C_{29}H_{31}N_3O_9S$ (m/z = 597). The ¹H NMR spectrum of **15c** show the anomeric proton as a doublet at δ 6.15 ppm with a spin-spin coupling constant of 11.28 Hz corresponding to a diaxial orientation of H-1' and H-2' protons and indicating the β -configuration. The other six protons of the glucopyranosyl ring resonated in the δ 3.99–5.53 ppm region. The remaining

Chart 1.

Chart 2.

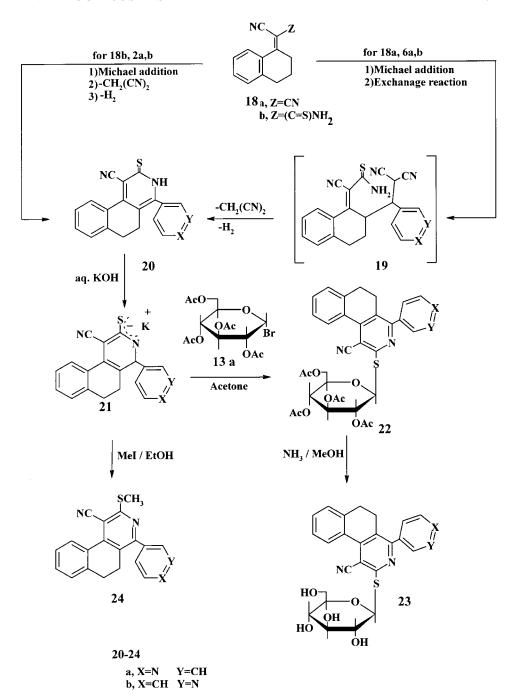


Chart 3.

<u>5</u>	<u>n</u> .	<u>X</u> <u>Y</u>	<u>5</u> <u>n</u>	X <u>Y</u>	
a		— — N СН	$\frac{-}{e}$ $\frac{-}{4}$	N CH	
b		CH N	f 4	CH N	
c	_	N CH	g 5	N CH	
d		CH N	h 5	CH N	
u	3 (-H N	н	C11	
15	_	v	<u>Y</u>	<u>R</u>	R۱
<u>15</u>	U	<u>X</u>			
a, b,	2	N	CH	H	OAc
с,	2 3	СН	N	H H	OAc OAc
d,	3	N	CH N	H H	OAc
e,	3 4	CH N	CH	л Н	OAc
f,	4	CH	N N	н	OAc
g,	5	N N	CH	H	OAc
h,	5	CH	N	H	OAc
i,	2	N	CH	OAc	Н
j,	2	СН	N	OAc	Н
k,	3	N	СН	OAc	H
l,	3	СН	N	OAc	H
m,	4	N	CH	OAc	H
n,	4	CH	N	OAc	Н
0,	5	N	CH	OAc	H
p,	5	CH	\mathbf{N}	OAc	H
<u>16</u>	<u>n</u>	<u>X</u>	<u>Y</u>	<u>R</u>	<u>R\</u>
a,	2	N	CH	H	OH
b,	2	СН	N	H	OH
c,	3	N	CH	H	OH
d,	3	CH	N	H	OH
e,	4	N	CH	H	OH
f,	4	CH	N	H	OH
g,	5	N	CH	H	OH
h,	5	CH	N CH	OH OH	OH
i,	2	N CH	CH N	OH OH	H
j, k,	2 3	CH N	CH	OH OH	H H
k, l,	3	CH	N N	ОH	H H
m,	3 4	N N	CH	OH	н Н
n,	4	CH	N	OН	н
0,	5	N	СН	OH	H
р,	5	СН	N	OH	Н
4 '					

Chart 4.

four acetoxy groups appeared as four singlets at δ 1.80–2.03 ppm and the four methylene protons of the agylcon resonated at δ 1.65, 1.78, 2.15 and 3.02 ppm. The ¹³C NMR spectrum was characterized by a signal at δ_c 80.08 corresponding to the C-1' atom of the β-D-glucopyranose. The four signals appearing at δ_c 169.01–170.08 ppm were due to the four acetoxy carbonyl carbon atoms, while the four signals at δ_c 20.00–20.20 were attributed to the acetate methyl carbons. The five methylene carbon atoms of the aglycone resonated at δ_c 25.00, 26.05, 27.00, 28.30, 33.30 ppm. Another five signals at δ_c 61.80, 68.00, 69.01, 73.20 and 75.00 were assigned to C-6', -4', -2', -3' and -5', respectively. The IR spectrum of compound 15c was characterized by the presence of acetoxy carbonyl groups at 1755 cm⁻¹. It could have been argued that the coupling reaction of 5 with 13 happened on the nitrogen atom to give the corresponding N-glycosides 14. However, the formation of the S-glycosides 15 was proved using ¹³C NMR which revealed the absence of the thione carbon at δ_c 178 ppm^[6] and appearance of C-2 at δ_c 161 ppm,^[7] nearly the same value as the corresponding S-methyl derivatives 17. Also, the UV spectra of compounds 15 proved that the reaction had led selectively to the formation of S-glycosyl derivatives since the corresponding S-methyl derivatives 17 gave the same UV absorption maxima. For example, the S-methyl derivative 17c showed two maxima at 277 and 362 nm and its corresponding glucosyl derivative also exhibited two maximum absorption bands at 272.2 and 317.6 nm. The protected nucleosides 15a-p were deblocked through treatment with methanolic ammonia to give the free glycosides 16a-p after chromatographic purification. TLC of compounds 16a-p showed that a single unique compound was produced, and their structures were confirmed by their elemental analysis and spectral data. The analytical data for compound 16j revealed a molecular formula $C_{20}H_{21}N_3O_5S$ (m/z = 415). The IR absorption spectrum of this compound showed a characteristic band at 3200-3600 cm⁻¹ due to the hydroxy groups of the galactose moiety. The ¹H NMR spectrum of compound 16j revealed the presence of a doublet at δ 5.62 $(J_{1'-2'} = 10.75 \,\text{Hz})$, indicating the presence of only the β -D galactopyranose. The other six-galactose protons appeared as a multiplet at δ 3.10–3.80 ppm, while the four hydroxy protons of the galactose moiety resonated at δ 4.55, 4.95 and 5.30 ppm (exchangeable by D_2O). The ^{13}C NMR spectrum was characterized by a signal at δ_c 83.50 corresponding to the C-1' atom of β -D galactopyranose. Another five signals at δ_c 60.00, 69.50, 69.10, 75.10, and 80.00 were assigned to C-6', -4', -2', -3', and -5' of the galactose part, respectively. In order to explore the synthetic potential of this exchange reaction for producing not readily accessible condensed pyridinethiones and their corresponding nucleosides, we investigated this reaction with other class of cycloalkylidene ring system. So, it was been found that tetralinylidenecyanothioacetamide 18b reacted with pyridylmethylidene-malononitrile 2a,b in refluxing ethanol containing catalytic amounts of piperidine for 3h to give the interesting phenanthridine analogues **20a,b**. The formation of

20 from 18b and 2a,b is assumed to proceed via addition of the active methylene group of 1 to the double bond of 2a,b, giving Michael intermediates which then cyclize via malononitrile elimination and oxidation under the reaction conditions to yield compounds 20. The obtained products 20 were shown to be the same as those resulted from the reaction of 18a with 6a,b by TLC, melting point and spectral data. The mechanism of the reaction of **18a** and **6a,b** is assumed to proceed through Michael addition followed by the exchange reaction between the cycloalkylidene group of 18a and the pyridylmethylidene group of 6a,b, which leads to the intermediates 19 and hence to the final product 20. The analytical data for compound 20a revealed a molecular formula $C_{19}H_{13}N_3S$ (m/z=315). The IR spectrum showed a broad band at 3250-3650 cm⁻¹ indicating the NH group. The ¹H NMR of **20a** also illustrated the presence of NH proton as a broad band at δ 14.02 ppm. Compounds **20a,b** were then reacted with 2,3,4,6-tetra-O-acetylα-D-glycopyranosyl bromide 13a in the presence of aqueous potassium hydroxide to give the corresponding glycosides 22a,b. The structures of the reaction products 22a,b were established by their elemental analyses and spectral data (MS, IR, UV, ¹H NMR and ¹³C NMR). The analytical data for **22a** revealed a molecular formula $C_{33}H_{32}N_3SO_9$ (m/z = 645). The ¹H NMR spectrum showed the anomeric proton as a doublet at δ 6.10 ppm with a spin-spin coupling constant of 8.7 Hz, which corresponds to the diaxial orientation of 1'-H and 2'-H protons, indicating the presence of only the β-configuration. The other six protons of the glucopyranosyl ring resonated in the δ 3.95–5.45 ppm region, while the four acetoxy groups appeared as four singlets at δ 1.78–2.18 ppm. The formation of the S-glycosides 22 was proved using the UV spectra, which gave the same UV absorption maxima as the corresponding S-methyl derivatives 24. The S-methyl derivative 24a showed two maxima at 280 and 360 nm and its glucosyl derivative 22a also exhibited two absorption maxima at 271 and 355 nm. Moreover, the ¹³C NMR of 22a revealed the absence of the thione carbon at δ_c 178 ppm^[6] and the appearance of the C-2 at δ_c 159 ppm, ^[7] the same value of the corresponding S-methyl derivative 24a. Upon deprotection of compounds 22 with methanolic ammonia the free nucleosides 23 were obtained in almost quantitative yields, the structures of the latter were established on the basis of elemental analyses and spectral data. The analytical data for compound 23a revealed a molecular formula $C_{25}H_{24}N_3O_5S$ (m/z = 482). The IR absorption spectra of this compound showed a characteristic band at 3200–3600 cm⁻¹ due to the hydroxy groups of the glucose moiety. ¹H NMR spectrum revealed the presence of a doublet at δ 5.69 (J_{1'-2'} = 9.8 Hz), indicating the presence of only the β -D-glucopyranose. The other six-galactose protons appeared as a multiplet at δ 3.18–3.70 ppm, while the four hydroxy groups of glucose moiety resonated at δ 4.55, 5.14, 5.28 and 5.58 ppm (exchangeable by D_2O). 13 C NMR spectrum were characterized by a signal at δ_c 84.01 corresponding to the C-1' atom of β -D-glucopyranose. Another five signals, at δ_c 60.00,

69.76, 71.86, 78.68 and 81.68, were assigned to C-6', -4', -2', -3', and -5' of the glucose moiety, respectively.

In summary, we have achieved the synthesis of interesting nonclassical bipyridyl and biheterocyclic-nitrogen thioglycosides by the reaction of substituted pyridinethiones with α -halosugars. These glycosides can be utilized as an excellent starting material for the synthesis of other carbohydrate derivatives and for biological evaluation studies.

EXPERIMENTAL

All evaporations were carried out under reduced pressure at 40°C. M.p.s are uncorrected. Aluminum sheets coated with silica gel F254 (Merck) were used for TLC. Detection was effected by viewing under a short-wavelength UV lamp. IR spectra were obtained (KBr disk) on a Pye Unicam Spectra 1000. ¹H NMR and ¹³C NMR spectra were measured on a Wilmad 270 MHz or on a Varian 400 MHz spectrometer for solution in CDCl₃ or (CD₃)₂SO with SiMe₄ as the internal standard. *J* values are given in Hz. Mass spectra were recorded on a Varian MAT 112 spectrometer. Analytical data were obtained from the Microanalytical Data Center at Cairo University.

Cycloalkane Ring-Fused 6-Pyridyl-3-cyanopyridine-2-(1H)-thiones (5a-h)

General Procedure

To a mixture of **2a,b** and **1a-d** or **6a,b** and **7a-d** (0.01 mol of each) in ethanol (50 mL), piperidine (1 mL) was added. The mixture was heated under reflux for 2 h, and then set aside overnight. The resultant precipitate filtered off and crystallized from the appropriate solvent.

5a: orange, from EtOH-DMF, m.p. 275°C, yield 80%. IR: v_{max}/cm^{-1} (KBr): 3240 (NH); 2225 (CN). $C_{14}H_{11}N_3S$ Calcd: C, 66.42; H, 4.35; N, 16.60, S, 12.64%. Found: C, 66.23; H, 4.23; N, 16.34, S, 12.83%, **5b**: orange, from EtOH-DMF, m.p. 275°C, yield 60%, IR: v_{max}/cm^{-1} (KBr): 3240 (NH); 2225 (CN), $C_{14}H_{11}N_3S$, Calcd: C, 66.42; H, 4.35; N, 16.60, S, 12.64%. Found: C, 66.23; H, 4.25; N, 16.38, S, 12.85%, **5c**: yellow, from EtOH-DMF, m.p. 265°C, yield 80%, IR: v_{max}/cm^{-1} (KBr): 3330 (NH); 2225 (CN), ¹H NMR: δ ppm: 1.60 (m, 2H, CH₂); 1.65 (m, 2H, CH₂); 2.10 (m, 2H, CH₂); 2.80 (m, 2H, CH₂); 7.42 (d, 2H, pyridyl-H); 8.78 (d, 2H, pyridyl-H); 14.12 (br s, 1H, NH), ¹³C NMR: δ ppm: 20.85 (CH₂); 21.55 (CH₂); 24.85 (CH₂); 27.85 (CH₂); 113.10 (C-5); 116.00 (CN); 119.85 (C-3); 123.00 (2CH, pyridyl-C); 142.30 (C-4', pyridyl-C); 149.85 (2CH, pyridyl-C); 152.80 (C-4); 155.30 (C-6); 176.00 (C=S) $C_{15}H_{13}N_3S$ (M⁺ = 267), Calcd: C, 67.40; H, 4.87; N, 15.73; S, 11.99%. Found: C, 67.63; H, 4.64; N, 15.92; S, 11.70%, **5d**: yellow, from EtOH-

DMF, m.p. 265°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3330 (NH); 2225 (CN), C₁₅H₁₃N₃S, Calcd: C, 67.40; H, 4.87; N, 15.73; S, 11.99%. Found: C, 67.28; H, 4.94; N, 15.95; S, 12.14%, **5e**: yellow, from EtOH-DMF, m.p. 280°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3330 (NH); 2225 (CN), $C_{16}H_{15}N_3S$, Calcd: C, 68.32; H, 5.34; N, 14.95; S, 11.39%. Found: C, 68.12; H, 5.54; N, 14.72; S, 11.20%, **5f**: yellow, from EtOH-DMF, m.p. 280°C, yield 80%, IR: v_{max}/cm^{-1} (KBr): 3330 (NH); 2225 (CN), $C_{16}H_{15}N_3S$, Calcd: C, 68.32; H, 5.34; N, 14.95; S, 11.39%. Found: C, 68.24; H, 5.65; N, 14.73; S, 11.57%, 5g: yellow, from EtOH-DMF, m.p. 285°C, yield 80%, IR: ν_{max}/cm⁻¹ (KBr): 3400 (NH); 2225 (CN), C₁₇H₁₇N₃S, Calcd: C, 69.15; H, 5.76; N, 14.23; S, 10.85%. Found: C, 69.35; H, 5.45; N, 14.41; S, 10.73%, 5h: yellow, from EtOH-DMF, m.p. 220°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3400 (NH); 2225 (CN), ${}^{1}H$ NMR: δ ppm: 1.20–1.55 (m, 6H, $3 \times CH_2$); 1.65 (m, 2H, CH₂); 2.28 (m, 2H, CH₂); 2.88 (m, 2H, CH₂); 7.55 (d, 1H, pyridyl-H); 7.87 (d, 1H, pyridyl-H); 8.55 (d, 1H, pyridyl-H); 8.65 (d, 1H, pyridyl-H); 14.18 (br s, 1H, NH), ¹³C NMR: δ ppm: 24.00 (CH₂); 25.5 (CH₂); 26.8 (CH₂); 27.8 (CH₂); 29.85 (CH₂); 31.2 (CH₂); 114.60 (C-5); 115.50 (CN); 123.50 (CH, pyridyl-C); 124.20 (C-3); 132.30 (C-3', pyridyl-C); 135.00 (CH, pyridyl-C); 138.40 (CH, pyridyl-C); 151.50 (CH, pyridyl-C); 155.80 (C-4); 156.70 (C-6); 176.70 (=C=S), $C_{17}H_{17}N_3S$ $(M^+=295)$, Calcd: C, 69.15; H, 5.76; N, 14.23; S, 10.85%. Found: C, 69.05; H, 5.58; N, 14.43; S, 10.96%.

2-(2',3',4',6'-Tetra-o-acetyl-β-D-gluco- and galacto-pyranosylthio)-4-pyridyl-pyridine-3-carbonitriles (15a-p)

General Procedures

To a solution of pyridine-2-(1*H*)-thiones 5a-h (0.01mol) in aqueous potassium hydroxide [0.56 g, 0.01 mol, in distilled water (6 mL)] was added a solution of 2,3,4,6-tetra-O-acetyl- α -D-gluco- or -galacto-pyranosyl bromide 12a,b (4.521 g, 0.011 mol) in acetone (30 mL). The reaction mixture was stirred at room temperature until reaction judged complete by TLC (30 min to 2 h). The mixture was evaporated under reduced pressure at 40°C, and the residue was washed with distilled water to remove the formed potassium bromide. The product was dried, and crystallized from the appropriate solvent.

15a: yellow, from EtOH, m. p. 195°C, yield 60%, IR: v_{max}/cm^{-1} (KBr): 2220 (CN); 1750 (C=O), $C_{28}H_{29}N_3O_9S$, Calcd: C, 57.63; H, 4.97; N, 7.2; S, 5.49%. Found: C, 57.43; H, 4.75; N, 7.43; S, 5.62%, **15b**: white, from EtOH, m.p. 125°C, yield 65%, IR: v_{max}/cm^{-1} (KBr): 2220 (CN); 1750 (C=O), ¹H NMR: δ ppm: 1.58 (t, 2H, CH₂); 1.7–2.2 (4 s, 12H, 4 × OAc); 2.56 (t, 2H, CH₂); 3.13 (t, 2H, CH₂); 3.85–4.23 (m, 3H, 6'-H₂, 5'-H); 5.18–5.39 (m, 3H, 4'-H, 3'-H, 2'-H); 6.01 (d, $J_{1'-2'}$ 10.2 Hz, 1H, 1'-H); 7.45 (m, 1H, pyridyl-H); 7.80

(m, 1 H, pyridyl-H); 8.47 (d, 1H, pyridyl-H); 8.72 (d, 1H, pyridyl-H), C₂₈H₂₉N₃O₉S, Calcd: C, 57.63; H, 4.97; N, 7.2; S, 5.49%, Found: C, 57.80; H, 4.70; N, 7.00; S, 5.6%. **15c**: yellow, from EtOH, m.p. 215°C, yield 60%. IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2200 (CN); 1720 (C=O), UV: λ_{max} : 317.6, 272.2; ¹H NMR: δ ppm: 1.65 (m, 2H, CH₂); 1.78 (m, 2H, CH₂); 1.90–2.03 (4s, 12H, 4 × OAc); 2.15 (t, 2H, CH₂); 3.02 (t, 2H, CH₂); 3.99–4.20 (m, 3H, 6'-H₂, 5'-H); 4.98-5.22 (m, 2H, 4'-H, 3'-H); 5.53 (t, 1H, 2'-H); 6.15 (d, $J_{1'-2'}$ 11.28 Hz 1H, 1'-H); 7.47 (d, 2H, pyridyl-H); 8.79 (d, 2H, pyridyl-H), ¹³C NMR: δ ppm: 20–20.10 (4 × CH₃); 21.10 (CH₂); 25.5 (CH₂); 27.8 (CH₂); 33.30 (CH₂); 61.80 (CH₂, C-6'); 68.00 (CH, C-4'); 69.01 (CH, C-2'); 73.20 (CH, C-3'); 75.00 (CH, C-5'); 80.50 (CH, C-1'); 103.50 (C-5); 114.50 (CN); 123.40 (2CH, pyridyl-C); 127.06 (C-3); 129.08 (C-4", pyridyl-C); 150.00 (2CH, pyridyl-C); 151.50 (C-4); 154.00 (C-6); 162 (=C-S); 169.01-170.08 ($4 \times C =$ O), $C_{29}H_{31}N_3O_9S$ (M⁺ = 597) Calcd: C, 58.29; H, 5.19; N, 7.03; S, 5.36%. Found: C, 58.03; H, 5.42; N, 6.93; S, 5.34%, 15d: white, from EtOH, m.p. 135°C, yield 70%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN); 1720 (C=O), ¹H NMR: δ ppm: 1.64 (m, 2H, CH₂); 1.85 (m, 2H, CH₂); 1.95–2.18 (4 s, 12H, 4 × OAc); 2.46 (m, 2H, CH₂); 3.00 (m, 2H, CH₂); 4.05 (m, 2H, 6'-H₂); 4.20 (t, 1H, 5'-H); 5.05 (m, 1H, 4'-H); 5.20 (m, 1H, 3'-H); 5.50 (t, 1H, 2'-H); 6.10 (d, $J_{1'-2'}$ 10.5 Hz, 1H, 1'-H); 7.60 (t, 1H, pyridyl-H); 7.90 (t, 1H, pyridyl-H); 8.60 (t, 1H, pyridyl-H); 8.70 (d, 1H, pyridyl-H), ¹³C NMR: δ ppm: 20.00–20.10 (4 × CH₃); 20.20 (CH₂); 26.20 (CH₂); 29.8 (CH₂); 33.50 (CH₂); 61.30 (CH₂, C-6'); 67.50 (CH, C-4'); 68.50 (CH, C-2'); 73.00 (CH, C-3'); 75.00 (CH, C-5'); 80.10 (CH, C-1'); 105.50 (C-5); 114.50 (CN); 123.20 (CH, pyridyl-C); 129.00 (C-3); 131.00 (C-4" pyridyl-C); 136.00 (CH, pyridyl-C); 146.70 (CH, pyridyl-C); 150.10 (CH, pyridyl-C); 151.20 (C-4); 152.10 (C-6); 161.02 (= C-S-); $169.01-170.08 \text{ (4} \times \text{C=O)}, C_{29}H_{31}N_3O_9S \text{ (M}^+ = 598), Calcd: C, 58.29; H,$ 5.19; N, 7.03; S, 5.36%. Found: C, 58.05; H, 5.14; N, 6.95; S, 5.40%, 15e: yellow, from EtOH, m.p. 203°C, yield 60%, IR: v_{max}/cm^{-1} (KBr): 2222 (CN); 1750 (C=O), UV: λ_{max} : 315.6, 271.2, ¹H NMR: δ ppm: 1.56 (m, 2H, CH_2); 1.75 (m, 2H, CH_2); 1.95–2.15 (4s, 12H, $4 \times OAc$); 2.45 (m, 4H, CH_2); 3.16 (m, 4H, 2CH₂); 4.00 (m, 2H, 6'-H₂); 4.15 (m, 1H, 5'-H); 5.05 (m, 1H, 4'-H); 5.15 (m, 1H, 3'-H); 5.5 (t, 1H, 2'-H); 6.20 (d, $J_{1'-2'}$ 9.9 Hz, 1H, 1'-H); 7.45(m, 2H, pyridyl-H); 8.78 (d, 2H, pyridyl-H), ¹³C NMR: δ ppm: 20.10 (4 × CH₃); 24.30 (CH₂); 26.20 (CH₂); 29.00 (CH₂); 32.8 (CH₂), 39.40 (CH₂); 61.5 (CH₂, C-6'); 66.50 (CH, C-4'); 67.30 (CH, C-2'); 73.00 (CH, C-3'); 75.00 (CH, C-5'); 80.10 (CH, C-1'); 104.00 (C-5); 114.50 (CN); 124.10 (2CH, pyridyl-C); 124.10 (C-3); 132.00 (C-4", pyridyl-C); 144.10 (C-4); 150.00 (2 CH, pyridyl-C); 150.02 (C-6) 154.04 (=C-S-); 168.10-170.10 (4×C=O), C₃₀H₃₃N₃O₉S, Calcd: C, 58.91; H, 5.44; N, 6.87, S 5.24%. Found: C, 60.12, H, 5.34; N, 6.62, S, 5.18%, 15f: white, from EtOH, m.p. 135°C, yield 70%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2222 (CN); 1750 (C=O), UV: λ_{max} : 317.6, 273.2, C₃₀H₃₃N₃O₉S, Calcd: C, 58.91; H, 5.44; N, 6.87, S, 5.24%, Found: C, 60.23, H, 5.53; N, 6.92, S 5.12%, **15g**: yellow, from EtOH, m.p. 155°C, yield 60%,

IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN); 1720 (C=O), UV: λ_{max} : 314.6, 269.8, Calcd: C, 59.52; H, 5.60; N, 6.72, S, 5.12%. Found: C, 59.42, H, 5.54; N, 6.60, S, 5.30%, **15h**: white, from EtOH, m.p. 125°C, yield 65%. IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN); 1720 (C=O), ¹H NMR: δ ppm: 0.84 (m, 2H, CH₂); 1.37 (m, 2H, CH₂); 1.73–1.83 (m, 2H, CH₂); 1.95–2.15 (4s, 12H, $4 \times OAc$); 2.56 (m, 2H, CH₂); 3.12 (m, 2H, CH₂); 3.46 (m, 2H, CH₂); 3.95– 4.25 (m, 3H, 6'-H₂, 5'-H); 4.98–5.24 (m, 2H, 4'-H, 3'-H); 5.61 (t, 1H, 2'-H); 6.20 (d, $J_{1'-2'}$ 10.0 Hz, 1H, 1'-H); 7.57 (m, 1H, pyridyl-H); 7.89 (m, 1H, pyridyl-H); 8.64 (d, 1H, pyridyl-HH); 8.75 (d, 1H, pyridyl-H), C₃₁H₃₅N₃O₉S, Calcd: C, 59.52; H, 5.60; N, 6.72, S, 5.12%. Found: C, 59.34, H, 5.42; N, 6.85, S, 5.23%, 15i: white, from EtOH, m.p. 185°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN); 1750 (C=O), $C_{28}H_{29}N_3O_9S$, Calcd: C, 57.63; H, 4.97; N, 7.2; S, 5.49%. Found: C, 57.83; H, 4.74; N, 7.43; S, 5.20%, 15j: white, from EtOH, m.p. 125°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN); 1750 (C=O), C₂₈H₂₉N₃O₉S, Calcd: C, 57.63; H, 4.97; N, 7.2; S, 5.49%. Found: C, 57.72; H, 4.69; N, 7.32; S, 5.65%, 15k: yellow, from EtOH, m.p. 195°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2200 (CN); 1720 (C=O), C₂₉H₃₁N₃O₉S, Calcd: C, 58.29; H, 5.19; N, 7.03; S, 5.36%. Found: C, 58.43; H, 5.44; N, 6.80; S, 5.30%, **151**: white, from EtOH, m.p. 125°C, yield 75%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN); 1720 (C=O), $C_{29}H_{31}N_3O_9S$, Calcd: C, 58.29; H, 5.19; N, 7.03; S, 5.36%. Found: C, 58.15; H, 5.36; N, 6.87; S, 5.42%, **15m**: yellow, from EtOH, m.p. 207°C, yield 75%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2222 (CN); 1750 (C=O), C₃₀H₃₃N₃O₉S, Calcd: C, 58.91; H, 5.44; N, 6.87, S, 5.24%. Found: C, 58.85, H, 5.34; N, 7.15, S, 5.18%, 15n: white, from EtOH, m.p. 135°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2222 (CN); 1750 (C=O), C₃₀H₃₃N₃O₉S, Calcd: C, 58.91; H, 5.44; N, 6.87, S, 5.24%. Found: C, 60.25, H, 5.53; N, 6.90, S, 5.10% .15o: buff, from EtOH, m.p. 204°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN); 1720 (C=O), $C_{31}H_{35}N_3O_9S$, Calcd: C, 59.52; H, 5.60; N, 6.72, S, 5.12%. Found: C, 59.55, H, 5.43; N, 6.50, S 5.30%. **15p**: white, from EtOH, m.p. 125°C, yield 65%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN); 1720 (C=O), C₃₁H₃₅N₃O₉S, Calcd: C, 59.52; H, 5.60; N, 6.72, S, 5.12%. Found: C, 59.45, H, 5.43; N, 6.82, S, 5.00%.

2-(β-D-gluco- and galacto-pyranosylthio)-6-pyridyl-pyridine-3-carbonitriles (16a-p)

General Procedure

Dry gaseous ammonia was passed through a solution of a protected nucleoside 15a-p (0.5 gm) in dry methanol (20 mL) at 0°C for 0.5 h, then the mixture was stirred at 0°C until reaction was judged to be complete by TLC (2–6 h). The mixture was evaporated at 40°C to a solid residue, which was

purified by chromatography or by crystallization from the appropriate solvent.

16a: white, from MeOH, m.p. 245°C, yield 55%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3000–3600 (OH); 2225 (CN), ¹H NMR: δ ppm: 2.41–2.51 (m, 2H, CH₂); 2.68 (m, 2H, CH₂); 2.78 (m, 2H, CH₂), 3.18–3.66 (m, 6H, 6'-H₂, 5-H', 4-H', 3'-H); 4.51 (t, 1H, H-2'); 5.11–5.23 (m, 2H, 3'-OH, 4'-OH); 5.50 (m, 1H, 6'-OH); 5.73 (d, $J_{1'-2'}$ 10.1 Hz, H, 1'-H); 8.33 (d, 2H, pyridyl-H); 8.80 (d, 2H, pyridyl-H), C₂₀H₂₁N₃O₅S, Calcd: C, 57.83; H, 5.06; N, 10.12; S, 7.72%. Found: C, 57.60; H, 4.90; N, 10.30; S, 7.80%, **16b**: yellow, from MeOH, m.p. 245°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3050–3600 (OH); 2225 (CN), C₂₀H₂₁N₃O₅S, Calcd: C, 57.83; H, 5.06; N, 10.12; S, 7.72%. Found: C, 57.74; H, 4.82; N, 10.00; S, 7.83%, 16c: white, from MeOH, m.p. 235°C, yield 65%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), UV: λ_{max} : 322.2, 276.2, ¹H NMR: δ ppm: 1.26 (m, 4H, 2CH₂); 1.73 (m, 2H, CH₂); 1.82 (m, 2H, CH₂), 2.02–2.34 (m, 2H, CH₂), 3.39–3.99 (m, 6H, 6'-H₂, 5'-H, 4'-H, 3'-H, 2'-H);; 4.16 (t, 2H, 2'-OH, 3'-OH); 5.17 (m, 1H, 4'-OH); 5.55 (m, 1H, 6'-OH); 6.15 (d, J_{1'.-2'} 9.7 Hz, H, 1'-H); 7.42 (t, 2H, pyridyl-H); 8.79 (d, 2H, pyridyl-H), C₂₁H₂₃N₃O₅S, Calcd: C, 58.74; H, 5.36; N, 9.79; S, 7.46%. Found: C, 58.62; H, 5.63; N, 10.00; S, 7.62%, **16d**: white, from MeOH, m.p. 175°C, yield 70%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), $C_{21}H_{23}N_3O_5S$, Calcd: C, 58.74; H, 5.36; N, 9.79; S, 7.46%. Found: C, 58.80; H, 5.40; N, 10.00; S, 7.30%, **16e**: white, from MeOH, m.p. 225°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), UV: λ_{max} : 324.6, 276.2, $C_{22}H_{25}N_3O_5S$, Calcd: C, 59.59; H, 5.64; N, 9.48; S, 7.22%. Found: C, 59.80; H, 5.40; N, 9.20; S, 7.30%, 16f: white, from MeOH, m.p. 170°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), UV: λ_{max} : 324.6, 275.2, C₂₂H₂₅N₃O₅S, Calcd: C, 59.59; H, 5.64; N, 9.48; S, 7.22%. Found: C, 59.70; H, 5.40; N, 9.30; S, 7.00%, **16g**: white, from MeOH, m.p. 211°C, yield 70%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), H NMR: δ ppm: 1.26 (m, 6H, 3CH₂); 1.73 (m, 4H, 2CH₂); 3.04 (m, 2H, CH₂); 3.14–3.64 (m, 6H, 6'-H₂, 5'-H, 4'-H, 3'-H, 2'-H); 4.48 (t, 1H, 2'-OH); 5.05 (m, 1H, 3'-OH); 5.25 (m, 1H, 4'-OH); 5.63 (d, $J_{1'-2'}$ 10.3 Hz, 1H, 1'-H); 7.46 (t, 2H, pyridyl-H); 8.78 (d, 2H, pyridyl-H), C₂₃H₂₇N₃O₅S, Calcd: C, 60.39; H, 5.90; N, 9.19; S, 7.02%. Found: C, 60.40; H, 5.60; N, 9.30; S, 7.00%, **16h**: white, from MeOH, m.p. 185°C, yield 75%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), C₂₃H₂₇N₃O₅S, Calcd: C, 60.39; H, 5.90; N, 9.19; S, 7.02%. Found: C, 60.50; H, 5.80; N, 9.30; S, 7.20%, **16i**: white, from MeOH, m.p. 174°C, yield 77%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3050–3550 (OH); 2225 (CN), $C_{20}H_{21}N_3O_5S$, Calcd: C, 57.83; H, 5.06; N, 10.12; S, 7.72%. Found: C, 57.60; H, 5.20; N, 10.20; S, 7.80%, **16j**: yellow, from MeOH, m.p. 245°C, yield 80%. IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3050–3600 (OH); 2225 (CN), ¹H NMR: δ ppm: 2.06 (t, 2H, CH₂); 2.80 (m, 2H, CH₂); 3.00 (m, 2H, CH₂); 3.1–3.80 (m, 6H, 6'-H₂, 5'-H, 4'-H, 3'-H, 2'-H); 4.55 (t, 2H, 2'-OH, 3'-OH); 4.95 (m, 1H, 4'-OH); 5.35 (m, 1H, 6'-OH); 5.62 (d, $J_{1'-2'}$ 10.75 Hz, 1H, 1'-H); 7.64 (t, 1H, pyridyl-H); 8.02 (m, 1H,

pyridyl-H); 8.7 (m, 2H, pyridyl-H), 13 C NMR: δ ppm: 22.02–33.01 (3CH₂); 60.00 (CH₂, 6'-H₂); 69.50 (CH, C-4'); 69.10 (CH, C-2'); 75.10 (CH, C-3'); 80.00 (CH, C-5'); 83.50 (CH, C-1'); 103.3 (C-5); 115.03 (CN); 123.01 (CH, pyridyl-C); 126.50 (C-3); 127.01 (C-5", pyridyl-C); 147.01 (C-4); 148.00 (CH, pyridyl-C); 151.01 (CH, pyridyl-C); 160.00 (C-6); 168 (=C-S), C₂₀H₂₁N₃O₅S, Calcd: C, 57.83; H, 5.06; N, 10.12; S, 7.72%. Found: C, 57.70; H, 4.80; N, 10.00; S, 7.80%, **15k**: white, from MeOH, m.p. 235°C, yield 50%. IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), $C_{21}H_{23}N_3O_5S$, Calcd: C, 58.74; H, 5.36; N, 9.79; S, 7.46%. Found: C, 58.60; H, 5.60; N, 10.00; S, 7.60%, **161**: white, from MeOH, m.p. 175°C, yield 65%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), C₂₁H₂₃N₃O₅S, Calcd: C, 58.74; H, 5.36; N, 9.79; S, 7.46%. Found: C, 58.80; H, 5.40; N, 10.00; S, 7.30, 16m: white, from MeOH, m.p. 225°C, yield 60%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), C₂₂H₂₅N₃O₅S, Calcd: C, 59.59; H, 5.64; N, 9.48; S, 7.22%. Found: C, 59.80; H, 5.40; N, 9.20; S, 7.30%, **16n**: white, from MeOH, m.p. 170°C, yield 75%. IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), ¹H NMR: δ ppm: 1.50–1.90 (m, 6H, 3 CH₂); 3.01 (m, 4H, 2CH₂); 3.21–3.80 (m, 6H, 6'-H₂, 5'-H, 4'-H, 3'-H, 2'-H); 4.50 (t, 2H, 2'-OH, 3'-OH); 4.95 (t, 1H, 4'-OH); 5.35 (d, 1H, 6'-OH); 5.67 (d, $J_{1'-2'}$ 9.8 Hz, 1H, 1'-H); 7.64 (t, 1H, pyridyl-H); 7.83 (m, 1H, pyridyl-H); 8.55 (m, 1H, pyridyl-H); 8.72 (m, 1H, pyridyl-H), ¹³C NMR: δ ppm: 22.02 (CH₂), 27.6 (CH₂), 33.01 (CH₂); 60.00 (CH₂, 6'-H₂); 69.10 (CH, C-4'); 69.20 (CH, C-2'); 75.50 (CH, C-3'); 80.00 (CH, C-5'); 89.01 (CH, C-1'); 103.50 (C-5); 115.50 (CN); 123.10 (CH, pyridyl-C); 131.50 (C-3); 132.50 (C-5", pyridyl-C); 139.001 (C-3); 139.50 (CH, pyridyl-C); 150.01 (CH, pyridyl-C); 156 (C-6); 167.50 (=C-S), C₂₂H₂₅N₃O₅S, Calcd: C, 59.59; H, 5.64; N, 9.48; S, 7.22%. Found: C, 59.70; H, 5.40; N, 9.30; S, 7.00, **160**: white, from MeOH, m.p. 211°C, yield 70%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), ¹H NMR: δ ppm: 1.35 (m, 8H, 4 CH₂); 1.76 (m, 2H, CH₂); 3.23–3.574 (m, 6H, 6'-H₂, 5'-H, 4'-H, 3'-H, 2'-H); 4.46 (t, 1H, 2'-OH); 5.03 (m, 1H, 3'-OH); 5.25 (m, 1H, 4'-OH); 5.60 (d, 1H, 6'-OH); 5.69 (d, J_{1'-2'} 9.9 Hz, 1H, 1'-H); 7.46 (t, 2H, pyridyl-H); 8.78 (d, 2H, pyridyl-H), C₂₃H₂₇N₃O₅S, Calcd: C, 60.39; H, 5.90; N, 9.19; S, 7.02%. Found: C, 60.40; H, 5.60; N, 9.30; S, 7.00%, **16p**: white, from MeOH, m.p. 185°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3200–3600 (OH); 2225 (CN), $C_{23}H_{27}N_3O_5S$, Calcd: C, 60.39; H, 5.90; N, 9.19; S, 7.02%. Found: C, 60.50; H, 5.80; N, 9.30; S, 7.20%.

4-Cyano-1-pyridyl-7,8-dihydrobenzo[f]isoquinoline-3(2H)-thiones (20a,b)

The above procedure for preparation of compounds **5** were followed. **20a**: red, from EtOH/DMF, m.p. 275°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3250–3750 (NH); 2225 (CN), ¹H NMR: δ ppm: 2.31–2.40 (m, 2H, CH₂); 2.58 (m, 2H, CH₂); 7.32–7.68 (m, 4H, phenyl); 8.13 (d, 2H, pyridyl-H);

8.78 (t, 2H, pyridyl-H); 14.2 (bs, 1H, NH), $C_{19}H_{13}N_3S$ (M⁺ = 315), Calcd: C, 72.38; H, 4.13; N, 13.33; S, 10.15%. Found: C, 72.60; H, 4.00; N, 13.20; S, 10.10%, **20b**: orange, from EtOH/DMF, m.p. 280°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 3250–3750 (NH); 2225 (CN), ¹H NMR: δ ppm: 2.37 (m, 2H, CH₂); 2.75 (m, 2H, CH₂); 7.36–7.60 (m, 4H, phenyl); 7.96 (d, 1H, pyridyl-H); 8.12 (d, 1H, pyridyl-H); 8.70 (d, 1H, pyridyl-H); 8.76 (d, 1H, pyridyl-H); 14.20 (s, bs, 1H, NH), $C_{19}H_{13}N_3S$ (M⁺ = 315), Calcd: C, 72.38; H, 4.13; N, 13.33; S, 10.15%. Found: C, 72.50; H, 4.30; N, 13.10; S, 10.00%.

4-Cyano-1-pyridyl-3-(2',3',4',6'-tetra-o-acetyl-β-d-glucopyranosylthio)-7,8-dihydrobenzo[f]isoquinolines (22a,b)

The above procedure for preparation of compounds 15 were followed. **22a**: white, from EtOH, m.p. 190°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN); 1750 (C=O), UV: λ_{max} : 355.0, 271.2, ¹H NMR: δ ppm: 1.78–2.18 (4 s 12H, 4CH₃); 2.67 (m, 2H, CH₂); 2.85 (m, 2H, CH₂); 3.95 (t, 1H, 6'-H₂); 4.17 (t, 1H, 5'-H); 5.18–5.45 (m, 3H, 4'-H, 3'-H, 2'-H); 6.1 (d, $J_{1'-2'}$ 8.7 Hz, 1H, 1'-H); 7.24–7.48 (m, 4H, phenyl-H); 8.26–8.31 (m, 2H, pyridyl-H); 8.87 (d, 2H, pyridyl-H), 13 C NMR: δ ppm: 20.20–20.40 (4×CH₃); 24.60 (CH₂), 25.8 (CH₂), 26.5 (CH₂), 27.11 (CH₂); 62.05 (CH₂, C-6'); 68.16 (C-4'); 68.70 (C-2'); 74.07 (C-3'); 76.30 (C-5'); 81.07 (C-1'); 105.60 (C-5); 114.80 (CN); 123.14-157.55 (aromatic-C, pyridyl-C), 169.4–170.00 (4 C=O), $C_{33}H_{32}N_3O_9S$ (M⁺= 646) Calcd: C, 61.40; H, 4.96; N, 6.51; S, 4.96%. Found: C, 61.23; H, 4.64; N, 6.51; S, 4.75%, **21b**: white, from EtOH, m.p. 219°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN); 1750 (C=O), ¹H NMR δ ppm: 1.62–2.08 (s, 12H, 4 CH₃); 2.70–2.83 (m, 4H, 2 CH₂); 3.90 (m, 2H, 6'-H₂); 4.17 (t, 1H, 5'-H); 5.14–5.45 (m, 3H, 4'-H, 3'-H, 2'-H) 6.1 (d, J_{1'-2'} 9.8 Hz, 1H, 1'-H); 7.24– 7.48 (m, 4H, phenyl); 7.69 (d, 1H, pyridyl-H); 8.30 (d, 1H, pyridyl-H); 8.58 (s, 1H, pyridyl-C); 8.87 (d, 1H, pyridyl-H), C₃₃H₃₂N₃O₉S, Calcd: C, 61.40; H, 4.96; N, 6.51; S, 4. 96%. Found: C, 61.50; H, 4.75; N, 6.33; S, 4.80%.

3-(β-D-glucopyranosylthio)-4-cyano-1-pyridyl-7,8-dihydro-benzo[f]-iso-quinolines (23a,b)

The above procedure for preparation of compounds **16** were followed. **23a**: white, from MeOH, m.p. 260°C, yield 70%, IR: v_{max}/cm^{-1} (KBr): 3200–3600 (OH); 2225 (CN), UV: λ_{max} : 363.6, 275.2, ¹H NMR: δ ppm: 2.52–2.65 (m, 2H, CH₂); 2.83 (t, 2H, CH₂); 3.18–3.70 (m, 6H, 6'-H₂, 5'-H, 4'-H, 3'-H, 2'-H); 4.55 (d, 1H, 2'-OH); 5.14 (d, 1H, 3'-OH); 5.28 (d, 1H, 4'-OH); 5.28 (d, 1H, 6'-OH); 5.69 (d, $J_{1'-2'}$ 9.8 Hz 1H, 1'-H); 7.20–7.68 (m, 4H, phenyl-H); 8.30 (d, 2H, pyridyl-H); 8.82 (d, 2H, pyridyl-H), ¹³C NMR: δ ppm: 24.40 (CH₂); 26.7 (CH₂); 60 (CH, C-6'); 69.76 (CH, C-4'); 71.86 (CH, C-2'); 78.68 (C-3'); 81.68 (C-5'); 84.01(C-1'); 104.49 (C-b); 115.16 (CN); 123.45–158.40 (aromatic-C, pyridyl-C), $C_{25}H_{24}N_3O_5S$, Calcd: C, 62.24; H, 4.98; N, 8.71; S,

6.64%. Found: C, 62.50; H, 4.60; N, 8.91; S, 6.85%, **23b**: white, from MeOH, m. p. 250°C, yield 75%, IR: v_{max}/cm^{-1} (KBr): 3200–3600 (OH); 2225 (CN), C₂₅H₂₄N₃O₅S, Calcd: C, 62.24; H, 4.98; N, 8.71; S, 6.64%. Found: C, 62.50; H, 4.60; N, 8.91; S, 6.85%.

2-Methylthio-6-pyridyl-3-cyano-pyridine-2-(1*H*)-thiones (17a-h) and 4-Cyano-1-pyridyl-3-(methylthio)-7,8-dihydrobenzo[f] isoquinolines (24a,b)

General Procedure

A solution of compounds **5a-h** and **20a,b** (0.01 mol), methyl iodide (0.01 mol) and NaOH (0.01 mol), water (16 mL) and ethanol (20 mL) was stirred at 60°C, and a white solid began to precipitate almost immediately. Stirring was continued for 30 min and the mixture was allowed to cool, the solid was collected, washed with water, dried and recrystalized from ethanol.

17a: white, from EtOH, m.p. 215°C, yield 80%, C₁₅H₁₃N₃S, Calcd: C, 67.40; H, 4.87; N, 15.73; S, 11.9%. Found: C, 67.67; H, 4.66; N, 15.82; S, 11.78%, **17b**: white, from EtOH, m.p. 202°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN), C₁₅H₁₃N₃S, Calcd: C, 67.40; H, 4.87; N, 15.73; S, 11.9%. Found: C, 67.67; H, 4.66; N, 15.82; S, 11.78%, 17c: white, from EtOH, m.p. 300°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN). UV: λ_{max} : 362, 277, C₁₆H₁₅N₃S, Calcd: C, 68.32; H, 5.34; N, 14.95; S, 11.39%. Found: C, 68.25; H, 5.58; N, 14.60; S, 10.96%, **17d**: white, from EtOH, m.p. 201, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2220 (CN), $C_{16}H_{15}N_3S$, Calcd: C, 68.32; H, 5.34; N, 14.95; S, 11.39%. Found: C, 68.25; H, 5.58; N, 14.60; S, 10.96%, 17e: white, from EtOH, m.p. 219°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN), UV: λ_{max} : 328.6, 278.2, ¹H NMR: δ ppm: 1.53 (m, 2H, CH₂); 1.70 (m, 2H, CH₂); 1.81 (m, 2H, CH₂); 2.46 (m, 2H, CH₂); 2.61 (s, 3H, CH₃); 3.16 (m, 2H, CH₂); 7.55 (d, 2H, pyridyl-H); 8.76 (d, 2H, pyridyl-H), ¹³C NMR: δ ppm: 12.93 (CH₃); 25.33–31.37 (5CH₂); 108.07 (C-5); 118.92 (CN); 123.32 (2CH, pyridyl-C); 128.01 (C-3); 131.19 (C-4"); 143.70 (C-4); 149.58 (2CH, pyridyl-C); 154.09 (C-6); 161.70 (=C-S-), $C_{17}H_{17}N_3S$ (M⁺ = 295), Calcd: C, 69.15; H, 5.76; N, 14.23; S, 10.85%. Found: C, 68.87; H, 5.66; N, 14.52; S, 10.78%, 17f: white, from EtOH, m.p. 203°C, yield 80%, IR: $v_{\text{max}}/\text{cm}^{-1}$ (KBr): 2225 (CN), UV: λ_{max}: 330.6, 280.2, C₁₇H₁₇N₃S, Calcd: C, 69.15; H, 5.76; N, 14.23; S, 10.85%. Found: C, 68.97; H, 5.59; N, 14.00; S, 10.75%, 17g: white, from EtOH, m.p. 197°C, yield 85%, C₁₈H₁₉N₃S, Calcd: C, 69.90; H, 6.14; N, 13.59; S, 10.35%. Found: C, 69.55; H, 5.88; N, 13.91; S, 10.66%, 17h: white, from EtOH, m.p. 201°C, yield 80%, C₁₈H₁₉N₃S, Calcd: C, 69.90; H, 6.14; N, 13.59; S, 10.35%, Found: C, 69.75; H, 5.78; N, 13.40; S, 10.45%, **24a**: white, from EtOH, m.p. 201°C, yield 70%, IR: v_{max}/cm^{-1} (KBr): 2225, UV: λ_{max} : 360.6, 281.2, ¹H NMR: δ ppm: 2.58 (m, 2H, CH₂); 2.61 (s, 3H, CH₃); 2.86 (m, 2H, CH₂); 7.33–7.52 (m, 4H, phenyl-H); 8.34 (d, 2H, pyridyl-H); 8.79 (d, 2H, pyridyl-H), ¹³C NMR: δ ppm: 13.23 (CH₃); 24.28 (CH₂); 26.64 (CH₂); 104.094–154.29 (aromatic-C, CN, pyridyl-C); 159.0 (=C-S-), C₂₀H₁₅N₃S $(M^+=329)$, Calcd: C, 69.95; H, 6.10; N, 14.23; S, 10.85%. Found: C, 69.25; H, 5.68; N, 14.40; S, 10.96%, **24b**: white, from EtOH, m.p. 230°C, yield 80%, IR: v_{max}/cm^{-1} (KBr): 2225 (CN), $C_{20}H_{15}N_3S$, Calcd: C, 69.95; H, 6.10; N, 14.23; S, 10.85%. Found: C, 69.25; H, 5.68; N, 14.40; S, 10.96%.

REFERENCES

- 1. Scala, S.; Akhmed, N.; Rao, U.S.; Paull, K.; Lan, L.; Dickstein, B.; Lee, J.; Elgemeie, G.H.; Stein, W.D.; Bates, S.E. Molecular Pharmacology **1997**, *51*, 1024.
- 2. Elgemeie, G.E.H.; Mansour, O.A.; Metwally, N.H. Nucleosides Nucleotides 1999, 18, 113.
- 3. Attia, A.M.; Elgemeie, G.E.H. Carbohydrate Research 1995, 268, 295.
- 4. Elgemeie, G.E.H.; Attia, A.M.E.; Hussain, B.A.W. Nucleosides Nucleotides 1998, 17, 855.
- 5. Attia, A.M.; Elgemeie, G.E.H.; Shahada, L.A. Tetrahedron 1997, 53, 17,441.
- 6. Still, I.W.J.; Plavac, N.; MacKinnon, D.M.; Chauhan, M.S.C. Can. J. Chem. **1976**, *54*, 280.
- 7. Stefaniak, L. Org. Magn. Reson. 1979, 12, 379.

Received April 25, 2001 Accepted June 12, 2002